/ martes 15 de mayo de 2018

Microchips cuánticos, la solución más rápida para las computadoras convencionales

Investigadores han demostrado que la luz infrarroja puede desplazar electrones entre dos estados diferentes, el clásico 1 y 0

Una técnica para manipular electrones con luz puede hacer que los microchips de los ordenadores sean un millón de veces más rápidos o incluso se vuelvan cuánticos.

Un equipo de investigadores en Alemania y en la Universidad de Michigan ha demostrado cómo los pulsos láser infrarrojos pueden desplazar electrones entre dos estados diferentes, el clásico 1 y 0, en una delgada lámina de semiconductor.

"La electrónica ordinaria está en el rango de gigahercios, mil millones de operaciones por segundo. Este método es un millón de veces más rápido", dijo Mackillo Kira, profesor de U-M de ingeniería eléctrica e informática.

La computación cuántica podría resolver problemas que llevan demasiado tiempo en las computadoras convencionales, avanzando áreas como la inteligencia artificial, el pronóstico del tiempo y el diseño de fármacos. Las computadoras cuánticas obtienen su poder de la forma en que sus bits cuánticos mecánicos, o qubits, no son meramente 1 o 0, sin que pueden ser mezclas, conocidas como superposiciones, de estos estados.

"En una computadora clásica, cada configuración de bits debe almacenarse y procesarse uno por uno, mientras que un conjunto de qubits puede almacenar y procesar todas las configuraciones de una vez", dijo Kira.

Esto significa que cuando quieres ver un montón de posibles soluciones a un problema y encontrar la mejor opción, la computación cuántica puede llegar allí mucho más rápido. Pero los qubits son difíciles de hacer porque los estados cuánticos son extremadamente frágiles. La principal ruta comercial, seguida por compañías como Intel, IBM, Microsoft y D-Wave, utiliza circuitos superconductores: bucles de alambre enfriados a temperaturas extremadamente frías, en los que los electrones dejan de colisionar entre sí, y en su lugar forman estados cuánticos.

El material es una sola capa de tungsteno y selenio en una red de nido de abeja.

Esta estructura produce un par de estados de electrones conocidos como pseudoespines. No es el giro del electrón (y aun así, los físicos advierten que los electrones no giran realmente), sino que es una especie de momento angular. Estos dos pseudoespines pueden codificar el 1 y 0.

Los próximos pasos hacia la computación cuántica serán poner en marcha dos qubits a la vez, lo suficientemente cerca el uno del otro para que interactúen. Esto podría implicar el apilamiento de hojas planas de semiconductores o el uso de técnicas de nanoestructuración.

Una técnica para manipular electrones con luz puede hacer que los microchips de los ordenadores sean un millón de veces más rápidos o incluso se vuelvan cuánticos.

Un equipo de investigadores en Alemania y en la Universidad de Michigan ha demostrado cómo los pulsos láser infrarrojos pueden desplazar electrones entre dos estados diferentes, el clásico 1 y 0, en una delgada lámina de semiconductor.

"La electrónica ordinaria está en el rango de gigahercios, mil millones de operaciones por segundo. Este método es un millón de veces más rápido", dijo Mackillo Kira, profesor de U-M de ingeniería eléctrica e informática.

La computación cuántica podría resolver problemas que llevan demasiado tiempo en las computadoras convencionales, avanzando áreas como la inteligencia artificial, el pronóstico del tiempo y el diseño de fármacos. Las computadoras cuánticas obtienen su poder de la forma en que sus bits cuánticos mecánicos, o qubits, no son meramente 1 o 0, sin que pueden ser mezclas, conocidas como superposiciones, de estos estados.

"En una computadora clásica, cada configuración de bits debe almacenarse y procesarse uno por uno, mientras que un conjunto de qubits puede almacenar y procesar todas las configuraciones de una vez", dijo Kira.

Esto significa que cuando quieres ver un montón de posibles soluciones a un problema y encontrar la mejor opción, la computación cuántica puede llegar allí mucho más rápido. Pero los qubits son difíciles de hacer porque los estados cuánticos son extremadamente frágiles. La principal ruta comercial, seguida por compañías como Intel, IBM, Microsoft y D-Wave, utiliza circuitos superconductores: bucles de alambre enfriados a temperaturas extremadamente frías, en los que los electrones dejan de colisionar entre sí, y en su lugar forman estados cuánticos.

El material es una sola capa de tungsteno y selenio en una red de nido de abeja.

Esta estructura produce un par de estados de electrones conocidos como pseudoespines. No es el giro del electrón (y aun así, los físicos advierten que los electrones no giran realmente), sino que es una especie de momento angular. Estos dos pseudoespines pueden codificar el 1 y 0.

Los próximos pasos hacia la computación cuántica serán poner en marcha dos qubits a la vez, lo suficientemente cerca el uno del otro para que interactúen. Esto podría implicar el apilamiento de hojas planas de semiconductores o el uso de técnicas de nanoestructuración.

Parral

Realiza obispo Mauricio Urrea lavatorio de pies dentro del Jueves Santo

Durante su predicación, el Obispo hizo alusión a la vida de Cristo y su ejemplo de amor, servicio y humildad ante el prójimo al entregarse para el perdón de los pecados

Elecciones 2024

INE Instalará más de 5 mil 700 Casillas para las Elecciones 2024 en Chihuahua

Dan de baja más de 12 mil credenciales por fallecimiento para el próximo proceso electoral del 2 de junio

Chihuahua

Autobuses dejan de vender pasajes a Juárez a migrantes; optan por "ubers viajeros"

La Secretaría de Gobernación y la Secretaría de Comunicaciones, Infraestructura y Transportes (SCIT) les solicitó esta medida

Elecciones 2024

¡Haz tu propuesta! Amplían plazo para elección de temas para debates entre candidatos a Alcaldía

La finalidad es permitir una mayor participación ciudadana en la organización de los debates electorales para este Proceso Electoral Local 2023-2024

Chihuahua

Enfrenta Chihuahua la crisis del agua con recurso estatal

A pesar de que se anunció que el Gobierno Federal entregaría a las entidades mil 200 mdp para la crisis del agua, el estado de Chihuahua no ha recibido la partida